Papers

Included are publictions by the contributors to the gateway and any additional publications that are useful in understanding the underlying methods.

  1. B. I. Schneider, R. Forrey, and N. Balakrishnan, “ITAMP meeting: Developing flexible and robust software for computational atomic and molecular physics,” (2018).
  2. B. I. Schneider, K. Bartschat, O. Zatsarinny, I. Bray, A. Scrinzi, F. Mart´ın, M. Klinker, J. Tennyson, J. D. Gorfinkiel, and S. Pamidighantam, “A science gateway for atomic and molecular physics,” arXiv preprint arxiv:2001.02286 (2020).
  3. D. Wannipurage, S. Marru, M. Piece, E. Abeysinghe, S. Pamidighantam, M. Christie, G. Shenoy, A. Dhamnaskar, and L. Jayathilaka, “Implementing a flexible, fault tolerant job management system for science gateways,” in PEARC ’19 (Association for Computing Machinery, New York, NY, USA, 2019).
  4. M. E. Pierce, S. Marru, E. Abeysinghe, S. Pamidighantam, M. Christie, and D. Wannipurage, “Supporting science gateways using Apache Airavata and SciGaP services,” in PEARC ’18: Proceedings of the Practice and Experience on Advanced Research Computing (2018).
  5. O. Zatsarinny, “”BSR: B-Spline Atomic R-Matrix Codes”,Comp. Phys. Commun. 174, 273–356 (2006).
  6. J. Feist, O. Zatsarinny, S. Nagele, R. Pazourek, J. Burgd¨orfer, X. Guan, K. Bartschat, and B. I. Schneider, “Time delays for attosecond streaking in photoionization of neon,” Phys. Rev. A 89, 033417 (2014).
  7. O. Zatsarinny and K. Bartschat, “The B-spline R-matrix method for atomic processes: application to atomic structure, electron collisions and photoionization,” Journal of Physics B: Atomic, Molecular and Optical Physics 46, 112001 (2013)
  8. Z. Maˇs´ın, J. Benda, J. D. Gorfinkiel, A. G. Harvey, and J. Tennyson, “UKRmol+: A suite for modelling electronic processes in molecules interacting with electrons, positrons and photons using the R-matrix method,” Comp. Phys. Commun. 249, 107092 (2020).
  9. A. C. Brown, G. S. J. Armstrong, J. Benda, D. D. A. Clarke, J. Wragg, K. R. Hamilton, Z. Maˇs´ın, J. D. Gorfinkiel, and H. W. van der Hart, “RMT: R-matrix with time-dependence. solving the semi-relativistic, time-dependent Schr¨odinger equation for general, multielectron atoms and molecules in intense, ultrashort, arbitrarily polarized laser pulses,” Comp. Phys. Commun. 250, 107062 (2020).
  10. UKRmol+, (2020), 10.5281/zenodo.2630495, 10.5281/zenodo.2630570, 10.5281/zenodo.4118420.
  11. T. Meltzer, J. Tennyson, Z. Maˇs´ın, M. C. Zammit, L. H. Scarlett, D. V. Fursa, and I. Bray, “Benchmark calculations of electron impact electronic excitation of the hydrogen molecule,” Journal of Physics B: Atomic, Molecular and Optical Physics, Volume 53, Number 14
  12. A. Sieradzka and J. D. Gorfinkiel, “Theoretical study of resonance formation in microhydrated molecules. II. Thymine-(H2O)n, n = 1,2,3,5,” The Journal of Chemical Physics 147, 034303 (2017).
  13. M. Richter, J. Gonz´alez-V´azquez, Z. Maˇs´ın, D. S. Brambila, A. Harvey, F. Morales, and F. Mart´ın, “Ultrafast imaging of laser-controlled non-adiabatic dynamics in NO2 from time-resolved photoelectron emission,” Phys. Chem. Chem. Phys., 2019,21, 10038-10051.
  14. J. Benda, J. D. Gorfinkiel, Z. Maˇs´ın, G. S. J. Armstrong, A. C. Brown, D. D. A. Clarke, H. W. van der Hart, andJ. Wragg, “Perturbative and non-perturbative photoionization of H2 and H2O using the molecular “R-matrix with time” method,” Phys. Rev. A (in press)
  15. A. C. Brown and H. W. van der Hart, “Extreme-ultraviolet-initated high-order harmonic generation: Driving inner- valence electrons using below-threshold-energy extreme-ultraviolet light,” Phys. Rev. Lett. 117, 093201 (2016).
  16. G. S. J. Armstrong, D. D. A. Clarke, J. Benda, A. C. Brown, and H. W. van der Hart, “Electron correlation and short-range dynamics in attosecond angular streaking,” Phys. Rev. A 101, 041401 (2020)
  17. P. Saxe, B. H. Lengsfield, B. H. R. Martin, and M. Page, “MESA (Molecular Electronic Structure Applications),” (1990).
  18. C. W. McCurdy, T. N. Rescigno, and B. I. Schneider, “Interrelation between variational principles for scattering amplitudes and generalized R-matrix theory,” Phys. Rev. A 36, 2061–2066 (1987).
  19. T. N. Rescigno and B. I. Schneider, “Disappearance of continuum exchange integrals from algebraic variational calculations of electron scattering,” Phys. Rev. A 37, 1044–1046 (1988).
  20. B. I. Schneider and T. N. Rescigno, “Complex Kohn variational method: Application to low-energy electron- molecule collisions,” Phys. Rev. A 37, 3749–3754 (1988).
  21. T. N. Rescigno and A. E. Orel, “Continuum basis functions in the complex Kohn variational method,” Phys. Rev. A 43, 1625–1628 (1991).
  22. B. H. Lengsfield and T. N. Rescigno, “Electron-molecule close coupling with correlated target wave functions: Application to impact dissociation of F2,” Phys. Rev. A 44, 2913–2920 (1991).
  23. T. N. Rescigno, B. H. Lengsfield, C. W. McCurdy, and S. D. Parker, “Ab initio description of polarization in low-energy electron collisions with polar molecules: Application to electron-NH3 scattering,” Phys. Rev. A 45, 7800–7809 (1992).
  24. T. N. Rescigno, B. H. Lengsfield, and C. W. McCurdy, Modern Electronic Structure Theory 1 (World Scientific, Singapore, 1995) Modern Electronic Structure Theory 1 (World Scientific, Singapore, 1995).
  25. T. N. Rescigno, C. W. McCurdy, A. E. Orel, and B. H. Lengsfield, Computational Method for Electron-Molecule Collisions (Plenum Press, New York, 1995)Computational Method for Electron-Molecule Collisions (Plenum Press, New York, 1995)
  26. T. N. Rescigno, B. H. Lengsfield, and A. E. Orel, “Interchannel coupling and ground state correlation effects in the photoionization of CO,” The Journal of Chemical Physics 99, 5097–5103 (1993).
  27. J. Jose, R. R. Lucchese, and T. N. Rescigno, “Interchannel coupling effects in the valence photoionization of SF6,” The Journal of Chemical Physics 140, 204305 (2014).
  28. T. N. Rescigno and B. I. Schneider, “Electron-impact excitation of the T and V states of ethylene: An ab initio study,” Phys. Rev. A 45, 2894–2902 (1992).
  29. T. J. Gil, C. W. McCurdy, T. N. Rescigno, and B. H. Lengsfield, “Polarization and correlation effects in elastic electron-Li2 scattering,” Phys. Rev. A 47, 255–263 (1993).
  30. B. I. Schneider, T. N. Rescigno, and C. W. McCurdy, “Resonant vibrational excitation of H2CO by low-energy electron impact,” Phys. Rev. A 42, 3132–3134 (1990).
  31. T. N. Rescigno, W. A. Isaacs, A. E. Orel, H.-D. Meyer, and C. W. McCurdy, “Theoretical study of resonant vibrational excitation of CO2 by electron impact,” Phys. Rev. A 65, 032716 (2002).
  32. D. J. Haxton, C. W. McCurdy, and T. N. Rescigno, “Angular dependence of dissociative electron attachment to polyatomic molecules: Application to the 2B1 metastable state of the H2O and H2S anions,” Phys. Rev. A 73, 062724 (2006).
  33. N. Douguet, D. S. Slaughter, H. Adaniya, A. Belkacem, A. E. Orel, and T. N. Rescigno, “Signatures of bond formation and bond scission dynamics in dissociative electron attachment to methane,” Phys. Chem. Chem. Phys. 17, 25621–25628 (2015)
  34. D. S. Slaughter, A. Belkacem, C. W. McCurdy, T. N. Rescigno, and D. J. Haxton, “Ion-momentum imaging of dissociative attachment of electrons to molecules,” J. Phys. B: At. Mol. Opt. Phys. 49, 222001 (2016).
  35. T. N. Rescigno, C. S. Trevisan, A. E. Orel, D. S. Slaughter, H. Adaniya, A. Belkacem, M. Weyland, A. Dorn, and C. W. McCurdy, “Dynamics of dissociative electron attachment to ammonia,” Phys. Rev. A 93, 052704 (2016).
  36. M. Fogle, D. J. Haxton, A. L. Landers, A. E. Orel, and T. N. Rescigno, “Ion-momentum imaging of dissociative- electron-attachment dynamics in acetylene,” Phys. Rev. A 90, 042712 (2014)
  37. N. Douguet, A. E. Orel, C. H. Greene, and V. Kokoouline, “Dissociative recombination of highly symmetric polyatomic ions,” Phys. Rev. Lett. 108, 023202 (2012).
  38. N. Douguet, V. Kokoouline, and A. E. Orel, “Breaking a tetrahedral molecular ion with electrons: study of NH+,” Journal of Physics B: Atomic, Molecular and Optical Physics 45, 051001 (2012).
  39. S. M. Nkambule, A. Larson, S. Fonseca dos Santos, and A. E. Orel, “Theoretical study of the mechanism of H2O+ dissociative recombination,” Phys. Rev. A 92, 012708 (2015)
  40. S. Fonseca dos Santos, N. Douguet, V. Kokoouline, and A. E. Orel, “Scattering matrix approach to the dissociative recombination of HCO+ and N2H+,” The Journal of Chemical Physics 140, 164308 (2014).
  41. C.-Y. Lin, C. W. McCurdy, and T. N. Rescigno, “Complex Kohn approach to molecular ionization by high-energy electrons: Application to H2O,” Phys. Rev. A 89, 012703 (2014).
  42. C.-Y. Lin, C. W. McCurdy, and T. N. Rescigno, “Theoretical study of (e, 2e) from outer- and inner-valence orbitals of CH4: A complex Kohn treatment,” Phys. Rev. A 89, 052718 (2014).
  43. J. B. Williams, C. S. Trevisan, M. S. Sch¨offler, T. Jahnke, I. Bocharova, H. Kim, B. Ulrich, R. Wallauer, F. Sturm,T. N. Rescigno, A. Belkacem, R. D¨orner, T. Weber, C. W. McCurdy, and A. L. Landers, “Imaging polyatomic molecules in three dimensions using molecular frame photoelectron angular distributions,” Phys. Rev. Lett. 108, 233002 (2012).
  44. T. N. Rescigno, N. Douguet, and A. E. Orel, “Imaging molecular isomerization using molecular-frame photoelectron angular distributions,” Journal of Physics B: Atomic, Molecular and Optical Physics 45, 194001 (2012).
  45. N. Douguet, T. N. Rescigno, and A. E. Orel, “Carbon-K-shell molecular-frame photoelectron angular distributions in the photoisomerization of neutral ethylene,” Phys. Rev. A 88, 013412 (2013).
  46. S. Fonseca dos Santos, N. Douguet, A. E. Orel, and T. N. Rescigno, “Ligand effects in carbon-K-shell photoion- ization,” Phys. Rev. A 91, 023408 (2015).
  47. A. Menssen, C. S. Trevisan, M. S. Sch¨offler, T. Jahnke, I. Bocharova, F. Sturm, N. Gehrken, B. Gaire, H. Gassert,S. Zeller, J. Voigtsberger, A. Kuhlins, F. Trinter, A. Gatton, J. Sartor, D. Reedy, C. Nook, B. Berry, M. Zohrabi,A. Kalinin, I. Ben-Itzhak, A. Belkacem, R. D¨orner, T. Weber, A. L. Landers, T. N. Rescigno, C. W. McCurdy, and J. B. Williams, “Molecular frame photoelectron angular distributions for core ionization of ethane, carbon tetrafluoride and 1,1-difluoroethylene,” Journal of Physics B: Atomic, Molecular and Optical Physics 49, 055203 (2016).
  48. N. Douguet, V. Kokoouline, and A. E. Orel, “Photodetachment cross sections of the C2nH(n = 1 3) hydrocarbon- chain anions,” Phys. Rev. A 90, 063410 (2014).
  49. N. Douguet, B. I. Schneider, and L. Argenti, “Application of the complex Kohn variational method to attosecond spectroscopy,” Phys. Rev. A 98, 023403 (2018).
  50. N. Douguet, H. Gharibnejad, B.I. Schneider, and L. Argenti, Bull. Am. Phys. Soc. 64, No. 4, D03.00003.
  51. I. Bray, D. V. Fursa, A. S. Kheifets, and A. T. Stelbovics, “Electrons and photons colliding with atoms: development and application of the convergent close-coupling method,” J. Phys. B: At. Mol. Opt. Phys. 35, R117–R146 (2002).
  52. C. J. Bostock, D. V. Fursa, and I. Bray, “Relativistic convergent close-coupling method: Calculation of electron scattering from hydrogenlike ions,” Phys. Rev. A 80, 052708 (2009).
  53. M. C. Zammit, D. V. Fursa, and I. Bray, “Electron scattering from the molecular hydrogen ion and its isotopologues,” Phys. Rev. A 90, 022711 (2014)
  54. M. C. Zammit, D. V. Fursa, J. S. Savage, and I. Bray, “Electron– and positron–molecule scattering: development of the molecular convergent close-coupling method,” J. Phys. B: At. Mol. Opt. Phys. 50, 123001 (2017).
  55. I. B. Abdurakhmanov, A. S. Kadyrov, S. K. Avazbaev, and I. Bray, “Solution of the proton-hydrogen scattering problem using a quantum-mechanical two-center convergent close-coupling method,” J. Phys. B: At. Mol. Opt. Phys. 49, 115203 (2016)
  56. I. Bray, I. B. Abdurakhmanov, J. J. Bailey, A. W. Bray, D. V. Fursa, A. S. Kadyrov, C. M. Rawlins, J. S. Savage, A. T. Stelbovics, and M. C. Zammit, “Convergent close-coupling approach to light and heavy projectile scattering on atomic and molecular hydrogen,” J. Phys. B: At. Mol. Opt. Phys. 50, 202001 (2017).
  57. L. Tao and A. Scrinzi, “Photo-electron momentum spectra from minimal volumes: the time-dependent surface flux method,” https://iopscience.iop.org/article/10.1088/1367-2630/14/1/013021/meta
  58. A. Scrinzi, “t-SURFF: fully differential two-electron photo-emission spectra,” New Journal of Physics 14, 013021 (2012). (2012).
  59. A. Scrinzi, “Infinite-range exterior complex scaling as a perfect absorber in time-dependent problems,” Phys. Rev. A 81, 053845 (2010).
  60. V. P. Majety, A. Zielinski, and A. Scrinzi, “Photoionization of few electron systems: a hybrid coupled channels approach,” New Journal of Physics 17, 063002 (2015).
  61. V. P. Majety and A. Scrinzi, “Photo-ionization of noble gases: A demonstration of hybrid coupled channels ap- proach,” Photonics 2, 93–103 (2015).
  62. V. P. Majety and A. Scrinzi, “Dynamic exchange in the strong field ionization of molecules,” Phys. Rev. Lett. 115, 103002 (2015).
  63. V. P. Majety and A. Scrinzi, “Multielectron effects in strong-field ionization of CO2: Impact on differential photo- electron spectra,” Phys. Rev. A 96, 053421 (2017).
  64. V. P. Majety and A. Scrinzi, “Absence of electron correlation effects in the helium attoclock setting,” Journal of Modern Optics 64, 1026–1030 (2017).
  65. A. Zielinski, V. P. Majety, and A. Scrinzi, “Double photoelectron momentum spectra of helium at infrared wavelength,” Phys. Rev. A 93, 023406 (2016).
  66. J. Zhu and A. Scrinzi, “Electron double-emission spectra for helium atoms in intense 400-nm laser pulses,” Phys. Rev. A 101, 063407 (2020).
  67. C. Marante, L. Argenti, and F. Mart´ın, “Hybrid Gaussian–B-spline basis for the electronic continuum: Photoion- ization of atomic hydrogen,” Physical Review A 90, 012506 (2014).
  68. C. Marante, M. Klinker, I. Corral, J. Gonz´alez-V´azquez, L. Argenti, and F. Mart´ın, “Hybrid-Basis Close-Coupling Interface to Quantum Chemistry Packages for the Treatment of Ionization Problems,” J. Chem. Theory Comput. 2017, 13, 2, 499–514 Publication Date:December 1, 2016
  69. The OpenMolcas Authors, “OpenMolcas: From Source Code to Insight,” Journal of Chemical Theory and Com- putation 15, 5925–5964 (2019).
  70. C. Marante, M. Klinker, T. Kjellsson, E. Lindroth, J. Gonz´alez-V´azquez, L. Argenti, and F. Mart´ın, “Photoioniza- tion using the xchem approach: Total and partial cross sections of Ne and resonance parameters above the 2s22p5 threshold,” Physical Review A 96, 022507 (2017).
  71. M. Klinker, C. Marante, L. Argenti, J. Gonz´alez-V´azquez, and F. Mart´ın, “Electron Correlation in the Ionization Continuum of Molecules: Photoionization of N2 in the Vicinity of the Hopfield Series of Autoionizing States,” J. Phys. Chem. Lett. 2018, 9, 4, 756–762 Publication Date:January 24, 2018
  72. M. Klinker, C. Marante, L. Argenti, J. Gonz´alez-V´azquez, and F. Mart´ın, “Partial cross sections and interfering resonances in photoionization of molecular nitrogen,” Physical Review A 98, 033413 (2018).
  73. S. M. Poullain, M. Klinker, J. Gonzalez-V´azquez, and F. Mart´ın, “Resonant photoionization of O2 up to the fourth ionization threshold,” Physical Chemistry Chemical Physics 21, 16497 – 16504 (2019)
  74. F. A. Gianturco, R. R. Lucchese, and N. Sanna, “Calculation of low-energy elastic cross sections for electron-CF4 scattering,” The Journal of Chemical Physics 100, 6464–6471 (1994)
  75. A. P. P. Natalense and R. R. Lucchese, “Cross section and asymmetry parameter calculation for sulfur 1s pho- toionization of SF6,” The Journal of Chemical Physics 111, 5344–5348 (1999).
  76. L. Greenman, R. R. Lucchese, and C. W. McCurdy, “Variational treatment of electron - polyatomic-molecule scattering calculations using adaptive overset grids,” Physical Review A 96, 052706 (2017).
  77. C. A. Marante, L. Greenman, C. S. Trevisan, T. N. Rescigno, C. W. McCurdy, and R. R. Lucchese, “Validity of the static-exchange approximation for inner-shell photoionization of polyatomic molecules,” Physical Review A 102, 012815 (2020).
  78. R. R. Lucchese, N. Sanna, A. P. P. Natalense, and F. A. Gianturco, “ePolyScat,” (2012).
  79. M. L. Wall and L. D. Carr, “Emergent timescales in entangled quantum dynamics of ultracold molecules in optical lattices,” New Journal of Physics, Volume 11, May 2009
  80. L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, “Cold and ultracold molecules: science, technology and applications,” New Journal of Physics, Volume 11, May 2009
  81. M. Wall, E. Bekaroglu, and L. D. Carr, “Molecular hubbard hamiltonian: Field regimes and molecular species,” Physical Review A 88, 023605 (2013). , 055049 (2009). , 055, 055049 (2009).
  82. D. Jaschke, S. Montangero, and L. D. Carr, “One-dimensional many-body entangled open quantum systems with tensor network methods,” Quantum Science and Technology 4, 013001 (2018).
  83. D. Jaschke, M. L. Wall, and L. D. Carr, “Open source matrix product states: Opening ways to simulate entangled many-body quantum systems in one dimension,” Computer Physics Communications 225, 59–91 (2018)
  84. D. Jaschke and L. D. Carr, “Open source matrix product states: exact diagonalization and other entanglement- accurate methods revisited in quantum systems,” Journal of Physics A: Mathematical and Theoretical 51, 465302.
  85. K. Maeda, M. L. Wall, and L. D. Carr, “Hyperfine structure of the hydroxyl free radical (OH) in electric and magnetic fields,” New Journal of Physics 17, 045014 (2015)
  86. A. Jablonski, F. Salvat, and C. J. Powell, “Comparison of electron elastic-scattering cross sections calculated from two commonly used atomic potentials,” Journal of Physical and Chemical Reference Data 33, 409–451 (2004).
  87. L. C. Pitchford, L. L. Alves, K. Bartschat, S. F. Biagi, M.-C. Bordage, I. Bray, C. E. Brion, M. J. Brunger, L. Campbell, A. Chachereau, B. Chaudhury, L. G. Christophorou, E. Carbone, N. A. Dyatko, C. M. Franck, D. V. Fursa, R. K. Gangwar, V. Guerra, P. Haefliger, G. J. M. Hagelaar, A. Hoesl, Y. Itikawa, I. V. Kochetov, R. P. McEachran, W. L. Morgan, A. P. Napartovich, V. Puech, M. Rabie, L. Sharma, R. Srivastava, A. D. Stauffer, J. Tennyson, J. de Urquijo, J. van Dijk, L. A. Viehland, M. C. Zammit, O. Zatsarinny, and S. Pancheshnyi, “LXCat: an open-access, web-based platform for data needed for modeling low temperature plasmas,” Plasma Processes and Polymers 14, 1600098 (2017)
  88. The AMP Gateway Community, (2019), https://ampgateway.org/.
  89. Marlon E. Pierce et al., “Apache Airavata: design and directions of a science gateway framework,” Concurrency and Computation: Practice and Experience 27, 4282–4291 (2015).
  90. Django Software Foundation, “Django,” (2019)
  91. M. Christie, A. Bhandar, S. Nakandala, S. Marru, E. Abeysinghe, S. Pamidighantam, and M. Pierce, “Using keycloak for gateway authentication and authorization,” (2017).
  92. S. P. Adithela, M. Christie, S. Marru, and M. Pierce, “Django content management system evaluation and integration with Apache Airavata,” in Proceedings of the Practice and Experience on Advanced Research Computing, PEARC ’18 (Association for Computing Machinery, New York, NY, USA, 2018).
  93. J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peterson, R. Roskies, J. R. Scott, and N. Wilkins-Diehr, “XSEDE: Accelerating scientific discovery,” Computing in Science & Engineering 16, 62–74 (2014).
  94. N. Wilkins-Diehr, S. Sanielevici, J. Alameda, J. Cazes, L. Crosby, M. Pierce, and R. Roskies, “An overview of the XSEDE extended collaborative support program,” in High Performance Computer Applications - 6th International Conference, ISUM 2015, Revised Selected Papers, Communications in Computer and Information Science, Vol. 595 (Springer Verlag, Germany, 2016) pp. 3–13.
  95. I. Ranawaka, S. Marru, J. Graham, A. Bisht, J. Basney, T. Fleury, J. Gaynor, D. Wannipurage, M. Christie, A. Mahmoud, E. Afgan, and M. Pierce, “Custos: Security middleware for science gateways,” in Practice and Experience in Advanced Research Computing, PEARC ’20 (Association for Computing Machinery, New York, NY, USA, 2020) pp. 278–284.
  96. P. Z. Vaillancourt, J. E. Coulter, R. Knepper, and B. Barker, “Self-scaling clusters and reproducible containers to enable scientific computing,” arXiv preprint arXiv:2006.14784 (2020).
  97. MPS, (2020), Matrix Product State open source code on Source Forge, http://sourceforge.net/projects/openmps/.
  98. Editors, “Meetings: Highlights from DAMOP 2016,” Physics 9, 67 (2016).
  99. L. D. Carr, “Teaching Research in the Traditional Classroom: Why Make Graduate Students Wait?” in APS Division of Atomic, Molecular and Optical Physics Meeting Abstracts (2016) p. H3.001.
  100. L. D. Carr, “Teaching Research in Traditional Classrooms: Why Make Graduate Students Wait?” American Association of Physics Teachers (2016) p. DB01
  101. L. D. Carr and S. B. McKagan, “Graduate quantum mechanics reform,” American Journal of Physics 77, 308–319 (2009)
  102. H. V. Kuo, P. B. Kohl, and L. D. Carr, “Socratic dialogs and clicker use in an upper-division mechanics course,” Phys. Ed. Res. Conf. Proc. 1413, 235 (2012).
  103. D. L. Vargas, A. M. Bridgeman, D. R. Schmidt, P. B. Kohl, B. R. Wilcox, and L. D. Carr, “Correlation between student collaboration network centrality and academic performance,” Physical Review Physics Education Research 14, 020112 (2018)
  104. J. E. Coulter, E. Abeysinghe, S. Pamidighantam, and M. Pierce, “Virtual clusters in the Jetstream cloud: A story of elasticized HPC,” in Proceedings of the Humans in the Loop: Enabling and Facilitating Research on Cloud Computing, HARC ’19 (Association for Computing Machinery, New York, NY, USA, 2019).
  105. S. Marru, M. Piece, E. Abeysinghe, S. Pamidighantam, M. Christie, and D. Wannipurage, “Experiences from scaling scale science gateway operations,” in Proceedings of the Practice and Experience in Advanced Research Computing on Rise of the Machines (Learning), PEARC ’19 (Association for Computing Machinery, New York, NY, USA, 2019).
  106. S. Marru, J. Alameda, L. Gunathilake, Y. Liu, S. Martin, D. Middleton, J. Palencia, S. Pamidighantam, M. Pierce, T. Schwartz, R. Singh, C. Thompson, T. Uram, S. Wang, N. Wilkins-Diehr, and H. Xu, “Science gateway use cases, version 1.1,” XSEDE XCI Technical Reports (2019).